Senin, 15 Maret 2010

ROTASI DAN KESETIMBANGAN BENDA TEGAR

Momen Gaya

Pada gerak lurus atau gerak translasi, faktor yang menyebabkan adanya gerak adalah gaya (F). Sedangkan pada gerak rotasi atau gerak melingkar, selain gaya (F), ada faktor lain yang menyebabkan benda itu bergerak rotasi yaitu lengan gaya (l) yang tegak lurus dengan gaya.

Secara matematis, momen gaya dirumuskan

τ = F x l

τ = F . l

Jika antara lengan gaya l dan gaya F tidak tegak lurus maka

τ = F . l sin θ

dimana θ adalah sudut antara lengan gaya l dengan gaya F.

Lengan gaya merupakan jarak antara titik tumpuan atau poros ke titik dimana gaya itu bekerja. Jika gaya dikenakan berada di ujung lengan maka bisa kita katakan lengan gaya ( l ) sama dengan jari-jari lingkaran (r).

Sehingga momen gaya dapat juga kita tulis

τ = F . r

Momen Inersia

adalah hasil kali satuan massa dan kuadrat satuan jarak.
kerennya, ini adalah persamaan Hukum II Newton untuk partikel yang berotasi.

Secara matematis, momen inersia partikel dirumuskan sebagai berikut :

momen-inersia-g

Momen Inersia Benda-Benda yang Bentuknya Beraturan

Selain bergantung pada sumbu rotasi, Momen Inersia (I) setiap partikel juga bergantung pada massa (m) partikel itu dan kuadrat jarak (r2) partikel dari sumbu rotasi. Total massa semua partikel yang menyusun benda = massa benda itu. Persoalannya, jarak setiap partikel yang menyusun benda tegar berbeda-beda jika diukur dari sumbu rotasi. Ada partikel yang berada di bagian tepi benda, ada partikel yang berada dekat sumbu rotasi, ada partikel yang sembunyi di pojok bawah, ada yang terjepit di tengah ;) . amati gambar di bawah

momen-inersia-0

Ini contoh sebuah benda tegar. Benda-benda tegar bisa dianggap tersusun dari partikel-partikel. Pada gambar, partikel diwakili oleh titik berwarna hitam. Jarak setiap partikel ke sumbu rotasi berbeda-beda. Ini cuma ilustrasi saja.

Cara praktis untuk mengatasi hal ini (menentukan MI benda tegar) adalah menggunakan kalkulus. Btw, pakai kalkulus agak beribet. Ntar malah gak nyambung….. Ada jalan keluar yang lebih mudah-kah ? Ada… Langsung tulis rumusnya saja :D

Lingkaran tipis dengan jari-jari R dan bermassa M (sumbu rotasi terletak pada pusat)

momen-inersia-1

Lingkaran tipis ini mirip seperti cincin tapi cincin lebih tebal. Jadi semua partikel yang menyusun lingkaran tipis berada pada jarak r dari sumbu rotasi. Momen inersia lingkaran tipis ini sama dengan jumlah total momen inersia semua partikel yang tersebar di seluruh bagian lingkaran tipis.

Momen Inersia lingkaran tipis yang berotasi seperti tampak pada gambar di atas, bisa diturunkan sebagai berikut :

momen-inersia-1b

Perhatikan gambar di atas. Setiap partikel pada lingkaran tipis berada pada jarak r dari sumbu rotasi. dengan demikian : r1 = r2 = r3 = r4 = r5 = r6 = R

I = MR2

Ini persamaan momen inersia-nya.

Cincin tipis berjari-jari R,

bermassa M dan lebar L (sumbu rotasi terletak di tengah-tengah salah satu diameter)

momen-inersia-2amomen-inersia-2b

Cincin tipis berjari-jari R, bermassa M dan lebar L

(sumbu rotasi terletak pada salah satu garis singgung)

momen-inersia-3amomen-inersia-3b

Silinder berongga,

dengan jari-jari dalam R2 dan jari-jari luar R1

momen-inersia-4amomen-inersia-5b

Silinder padat

dengan jari-jari R (sumbu rotasi terletak pada sumbu silinder)

momen-inersia-5a

momen-inersia-4b

Silinder padat dengan jari-jari R

(sumbu rotasi terletak pada diameter pusat)

momen-inersia-6amomen-inersia-6b

Bola pejal dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-7amomen-inersia-7b

Kulit Bola dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-8amomen-inersia-8b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada pusat )

momen-inersia-9amomen-inersia-9b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada salah satu ujung)

momen-inersia-10amomen-inersia-10b

Balok pejal yang panjangnya P dan lebarnya L

(sumbu rotasi terletak pada pusat; tegak lurus permukaan)

momen-inersia-11amomen-inersia-11b

  * Momentum Sudut


Momentum sudut adalah sebuah besaran fisika yang penting, khususnya untuk masalah-masalah pada tingkat energi dan spektra atom dan molekul. Dalam bagian ini, momentum sudut akan didefinisikan dan sifat-sifatnya akan dijelaskan.

Momentum sudut dari sebuah partikel didefinisikan sebagai sebuah produk luar (produk vektor) r x p dari posisi vektor r yang menyatakan posisi (x, y, z) dan momentum = (x, y, z).

(1.96)

Persamaan ini dapat ditulis ulang dengan komponen-komponen berikut.

(1.97)

Momentum sudut yang diperkenalkan di sini disebut sebagai momentum sudut orbital karena ini berkaitan dengan gerak orbital klasik dari partikel.

  * Keseimbangan Benda Tegar

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Benda akan seimbang jika pas diletakkan di titik beratnya

Benda akan seimbang jika pas diletakkan di titik beratnya

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.

Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.

Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.

seorang yang meloncat ke air dengan berputar

seorang yang meloncat ke air dengan berputar

Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.

Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.

Orang ini berada dalam keseimbangan

Orang ini berada dalam keseimbangan

Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.

  * Titik Berat

Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat massa suatu benda tidak dipengaruhi oleh medan gravitasi, sehingga letaknya tidak selalu berhimpit dengan letak titik beratnya.

1. PUSAT MASSA

Koordinat pusat massa dari benda-benda diskrit, dengan massa masing-masing M1, M2,....... , Mi ; yang terletak pada koordinat (x1,y1), (x2,y2),........, (xi,yi) adalah:

X = (å Mi . Xi)/(Mi)
 

Y = (å Mi . Yi)/(Mi)

2. TITIK BERAT (X,Y)

Koordinat titik berat suatu sistem benda dengan berat masing-masing W1, W2, ........., Wi ; yang terletak pada koordinat (x1,y1), (x2,y2), ............, (xi,yi) adalah:

X = (å Wi . Xi)/(Wi)
 

Y = (å Wi . Yi)/(Wi)

LETAK/POSISI TITIK BERAT

  1. Terletak pada perpotongan diagonal ruang untuk benda homogen berbentuk teratur.
  2. Terletak pada perpotongan kedua garis vertikal untuk benda sembarang.
  3. Bisa terletak di dalam atau diluar bendanya tergantung pada homogenitas dan bentuknya.

TITIK BERAT BEBERAPA BENDA
Gambar
 
Nama
 Letak Titik Berat  
Keterangan
 Garis lurus yo = 1/2 AB z = di tengah-tengah AB
 Busur lingkaran yo = AB/AB . R AB = tali busur
AB = busur AB
R = jari-jari lingkaran
 Busur setengah lingkaran yo = 2.R/p R = jari-jari lingkaran
 Juring lingkaran yo = AB/AB.2/3.R AB = tali busur
AB = busur AB
R = jari-jari lingkaran
 Setengah lingkaran yo = 4.R/3 p R = jari-jari lingkaran
 Selimut setengah bola yo = 1/2 R R = jari-jari lingkaran
 Selimut limas yo = 1/3 t t = tinggi limas
 Selimut kerucut yo = 1/3 t t = tinggi kerucut
 Setengah bola yo = 3/8 R R = jari-jari bola
 Limas yo = 1/4 t t = tinggi limas
 Kerucut yo = 1/4 t t = tinggi kerucut

Dalam menyelesaikan persoalan titik berat benda, terlebih dahulu bendanya dibagi-bagi sesuai dengan bentuk benda khusus yang sudah diketahui letak titik beratnya, kemudian baru diselesaikan dengan rumusan yang ada.

Contoh:

Dua silinder homogen disusun seporos dengan panjang dan massanya masing-masing: l1 = 5 cm ; m1 = 6 kg ; l2 = 10 cm ; m2 = 4 kg.
Tentukan letak titik berat sistem silinder tersebut !

Jawab:

Kita ambil ujung kiri sebagai acuan, maka:

x1 = 0.5 . l1 = 2.5 cm
x2 = l2 + 0.5 . l1 = 5 + 5 = 10 cm

X = (å mi . xi)/(mi)
X = (m1.x1) + (m1.x1)/(m1 + m2)

X = (6 . 2.5 + 4 . 10)/(6 + 4)
X = (15 + 40)/(10) = 5.5 cm

Jadi titik beratnya terletak 5.5 cm di kanan ujung m1


Tidak ada komentar:

Poskan Komentar